
Recursive Sets and Relations 

Computability and Logic 



The Plan 
• Eventually, I will show that any Turing-computable* function is 

a recursive function, thereby closing the ‘loop’: 
– All Turing-computable* functions are recursive 
– All recursive functions are Abacus-computable* (already shown) 
– All Abacus-computable* are Turing-computable* (already shown) 

• Thus, we will have shown that these three sets are exactly the 
same, providing evidence in favor of the Church-Turing Thesis. 

• OK, but to show that any Turing-computable* function is a 
recursive function, I will need a whole lot more machinery: 
– I need to prove a bunch more functions to be recursive. 
– I will define recursive sets and relations … which will be a great help in 

showing certain functions to be recursive … and vice versa 



Recursive Sets 

• The characteristic function cS of a set S ⊆ N is 
defined as follows: 
– cS(x) = 1 if x ∈ S 
– cS(x) = 0 if x ∉ S 

• A set S is a recursive set iff its characteristic 
function cS is a recursive function 

• Examples of recursive sets 
– The empty set (cS = z) 
– The set of all natural numbers (cS = const1) 
– The set of even numbers (cS = ?) 

 



Recursive Relations 

• The characteristic function cR of a relation R ⊆ Nk is 
defined as follows: 
– cS(x1, …, xk) = 1 if <x1, …, xk> ∈ S 
– cS(x1, …, xk) = 0 if <x1, …, xk> ∉ S 

• A relation R is a recursive set iff its characteristic 
function cR is a recursive function 

• Examples of recursive relations: <, >, ≤, = 
 
 

)(),( yxsgyxc −=≤ 

)(),( xysgyxc −=< 

)()(),( xysgyxsgyxc −×−== 

)(),( yxsgyxc −=> 



Finding new Recursive  
Functions and Relations 

• In the next slides, we’ll go over a bunch of 
different methods to define new functions 
and relations (and sets, but they can be seen 
as 1-place relations) from existing ones. 

• In each case, we can show that if the existing 
functions and relations are recursive, then the 
resulting functions and relations will be 
recursive as well. 



Processes 
• From functions to functions: 

– Composition, Recursion, Minimization (we saw this!) 
• From functions and relations to functions: 

– Definition by Cases 
• From functions and relations to relations: 

– Substitution 
• From functions to relations: 

– Graph 
• From relations to relations: 

– Logical operations 
• From relations to functions: 

– Bounded Minimization and Maximization 



Definition by Cases 
• Suppose f(x1, …, xn) is defined by: 

–  f(x1, …, xn) = g1(x1, …, xn) if R1(x1, …, xn)  
– … 
– f(x1, …, xn) = gm(x1, …, xn) if Rm(x1, …, xn) 

• Where: 
– R1 … Rm are mutually exclusive 

• i.e. there is no x1, …, xn, i ≠ j: Ri(x1, …, xn) and Rj(x1, …, xn)  

– R1 … Rm are collectively exhaustive 
• i.e. for all x1, …, xn there is a i: Ri(x1, …, xn) 

• If: 
– g1 … gm are all recursive functions 
– R1 … Rm are all recursive relations 

• Then:  
– f is a recursive function 

• Proof:  
– f(x1, …, xn) = g1(x1, …, xn) × cR1(x1, …, xn) + … + gm(x1, …, xn) × cRm(x1, …, xn) 



Example: min and max 

• min(x,y) is a recursive function 
• Proof: min(x,y) can be defined by cases: 

– min(x,y) = x if x ≤ y  
– min(x,y) = y if x > y 

• max(x,y) is a recursive function as well: 
– max(x,y) = x if x > y 
– max(x,y) = y if x ≤ y 



Substitution 
• Given: 

– Relation R(y1, …, ym) 
– Functions f1(x1, …, xn), …, fm(x1, …, xn)  

• We can define relation R’(x1, …, xn) as follows: 
– R’(x1, …, xn) iff R(f1(x1, …, xn), …, fm(x1, …, xn)) 

• If: 
– R(y1, …, ym) is a recursive relation 
– f1(x1, …, xn), …, fm(x1, …, xn) are recursive functions 

• Then: 
– R’ is a recursive relation 

• Proof: 
– cR’(x1, …, xn) = cR(f1(x1, …, xn), …, fm(x1, …, xn)) 



Example 

• Consider relation R(x,y,z) defined as follows: 
– R(x,y,z) iff y × z ≤ x 

• We see that R is the result of substituting the 
recursive function × into recursive relation ≤ 

• Thus, R is recursive 
• (Technically, R is the result of substituting the 

functions f1(x,y,z) = y × z and f2(x,y,z) = x into ≤, 
and we need to show that f1(x,y,z) = y × z and 
f2(x,y,z) = x are recursive … but that’s trivial using 
the identity functions) 



Graph 

• Remember that any function f:X→Y can be 
seen as a relation defined over X × Y 

• The Graph operation will obtain a relationship 
from a function in exactly this manner. 
– Given function f(x1, …, xn)  
– Define Rf(x1, …, xn, y) iff f(x1, …, xn) = y 

• If f is recursive, then Rf is recursive. 
• Proof: Rf is the result of substituting recursive 

function f into recursive relation =  



Logical Operations 

• Given n-place relations R, R1, and R2 we can 
define: 
– ¬R(x1, …, xn) iff not R(x1, …, xn) (i.e. <x1, …, xn> ∉ R) 
– R1 ∧ R2(x1, …, xn) iff R1(x1, …, xn) and R1(x1, …, xn)  
– R1 ∨ R2(x1, …, xn) iff R1(x1, …, xn) or R1(x1, …, xn)  

• If R, R1, and R2 are recursive, then ¬R, R1 ∧ R2 , 
and R1 ∨ R2 are recursive: 
– c¬R = 1 – cR 

– cR1 ∧ R2 = cR1 × cR2   (or: cR1 ∧ R2 = min(cR1 , cR2 ) ) 
– cR1 ∨ R2 = sg(cR1 + cR2 )  (or: cR1 ∨ R2 = max(cR1 , cR2 ) ) 

 
 



Bounded Quantification 

• Given n+1-place relation R(x1, …, xn, y), we can define: 
• ∃v≤u[R](x1, …, xn, u) iff there exists some v ≤ u such that R(x1, …, xn, v) 

– We’ll simply write this as ∃v ≤ u R(x1, …, xn, v)  
• ∀v ≤ u[R](x1, …, xn, u) iff for all v ≤ u: R(x1, …, xn, v) 

– We’ll simply write this as ∀v ≤ u R(x1, …, xn, v)  

 
• If R is recursive, then ∃v ≤ u[R] and ∀v ≤ u[R] are recursive as 

well: 

∑
=

≤∃ =
u

v
nRnRuv vxxcsguxxc

0
11][ )),,,((),,,( 

∏
=

≤∀ =
u

v
nRnRuv vxxcuxxc

0
11][ ),,,(),,,( 



Using Strict Bounds 





=
<

= ≤∀
<∀ uif

uifupredxxc
uxxc nRuv

nRuv 01
0))(,,,(

),,,( 1][
1][








=
<

= ≤∃
<∃ uif

uifupredxxc
uxxc nRuv

nRuv 00
0))(,,,(

),,,( 1][
1][






Example: Prime 

• Consider the 1-place relation P(x) where P(x) 
iff x is prime (alternatively, consider the set P 
of all primes) 

• P(x) is recursive (P is recursive) since: 
– P(x) iff 1<x ∧ ¬∃y<x ∃z<x y × z = x 
– That is: P(x) can be defined by applying the 

processes of logical operators (¬, ∧ , and bounded 
quantification), substitution, and composition to 
other recursive functions (const1 and ×) and 
recursive relations (< and =). 



Bounded Minimization and 
Maximization 

• Given n+1-place relation R(x1, …, xn, y) define 
n+1-place functions Min[R] and Max[R]: 
– Min[R](x1, …, xn, w) = smallest y<=w for which 

R(x1, …, xn, y)   if such a y exists 
– Min[R](x1, …, xn, w) = w + 1 if no such y exists 
– Max[R](x1, …, xn, w) = largest y<=w for which R(x1, 

…, xn, y)   if such a y exists 
– Max[R](x1, …, xn, w) = 0 if no such y exists 

 
 
 



Proof that Min[R] is Recursive  
if R is Recursive 

 If R is recursive, then Min[R] is recursive as 
well: 

 
 
 
 where cS is the characteristic function of the 

relation S defined as ∀t≤i[¬R](x1, …, xn, i) 
 
 

∑
=

=
w

i
nSn ixxcwxxRMin

0
11 ),,,(),,,]([ 



Why This Works 

w R(x,w) 
(e.g.) 

¬R(x,w) S(x,w) = 
∀t≤w[¬R](x,w) = 
∀t≤w ¬R(x,t)  

cS(x,w) 
 

0 F T T 1 1 

1 F T T 1 2 

2 T F F 0 2 

3 F T F 0 2 

4 T F F 0 2 

5 F T F 0 2 

∑
=

w

i
S ixc

0
),(

Verify that this is indeed Min[R](x,w) 

Suppose we want to know Min[R](x,w), where R is defined as below: 



Max[R] is Recursive too 

• Left as HW question 
– Make sure to demonstrate that your function 

works by providing a similar table (and note that 
for the specific R relation as defined in that table, 
the Max column entries should be 0,0,2,2,4,4) 



Example: quo and rem are Recursive 

• Define quo(tient) and rem(ainder) functions as 
follows: 
– quo(x,y) = the largest z≤x such that z*y ≤ x  if y > 0 
– quo(x,y) = 0 if y = 0 
– rem(x,y) = x – y*quo(x,y) 

• quo is recursive since it is a definition by cases 
where one of the cases uses the bounded 
maximization of a recursive relation (and every 
other function and relation used is recursive) 

• rem is recursive since -, *, and quo are recursive. 



Example: The Next Prime 

• Let π’(x) = the least y such that x < y and y is 
prime 

• π’(x) is recursive, since it can be defined as the 
bounded minimization of a recursive relation: 
– π’(x) = Min[x<y ∧ Prime(y)](x,x!+1) 
– Explanation: x!+1 is not divisible by any number ≤ 

x, so either x!+ 1 is prime itself or it has a prime 
factor greater than x … in either case, there exists 
a prime number greater than x but smaller or 
equal to x!+1 



Example: Modified Logarithms 

• Consider the following two modified logarithm functions 
lo(x,y) and lg(x,y): 
– lo(x,y) = the largest z such that yz divides x  if x and y > 1   

where ‘x divides y’ iff for some z: z * x = y 
– lo(x,y) = 0 otherwise 
– lg(x,y) = the largest z such that yz ≤ x  if x > 1 and y > 1 
– lg(x,y) = 0 otherwise 

• lo and lg are recursive, since they can be defined using 
bounded maximization (use x as upper bound) and other 
‘recursive’ operations over recursive functions and relations 
(divides can be defined as bounded existential quantification 
(again, use x as bound)) 



Prime Coding and Decoding Functions 

• A sequence x1, …, xk can be encoded using the 
following ‘prime coding’: code(x1, …, xn) = 
2n*3x1*5x2* … π(n)xn where π(n) is the ‘n-th’ prime 
and where 2 is the ‘0-th’ prime. 
– π(n) is recursive, since π(0) = 2 and π(n+1) = π’(π(n))  
– code(x1, …, xn) is therefore recursive as well 

• Given some code number s, the sequence can be 
decoded using the following (recursive) function: 
– ent(s,i) = the i-th entry (the 0-th entry gives the length) = 

lo(s, π(i))  


	Recursive Sets and Relations
	The Plan
	Recursive Sets
	Recursive Relations
	Finding new Recursive �Functions and Relations
	Processes
	Definition by Cases
	Example: min and max
	Substitution
	Example
	Graph
	Logical Operations
	Bounded Quantification
	Using Strict Bounds
	Example: Prime
	Bounded Minimization and Maximization
	Proof that Min[R] is Recursive �if R is Recursive
	Why This Works
	Max[R] is Recursive too
	Example: quo and rem are Recursive
	Example: The Next Prime
	Example: Modified Logarithms
	Prime Coding and Decoding Functions

