Recursive Sets and Relations

Computability and Logic

The Plan

e Eventually, | will show that any Turing-computable™ function is
a recursive function, thereby closing the ‘loop’:

— All Turing-computable® functions are recursive

— All recursive functions are Abacus-computable” (already shown)

— All Abacus-computable® are Turing-computable™ (already shown)
Thus, we will have shown that these three sets are exactly the
same, providing evidence in favor of the Church-Turing Thesis.
OK, but to show that any Turing-computable™ function is a
recursive function, | will need a whole lot more machinery:

— | need to prove a bunch more functions to be recursive.

— | will define recursive sets and relations ... which will be a great help in
showing certain functions to be recursive ... and vice versa

Recursive Sets

* The characteristic function c. of asetSc N is
defined as follows:

—C(x)=1ifxe S
— C(x)=0ifx g S

e AsetSis arecursive set iff its characteristic
function c. is a recursive function

e Examples of recursive sets
— The empty set (c, = z)
— The set of all natural numbers (c, = const,)
— The set of even numbers (c, = ?)

Recursive Relations

* The characteristic function c; of a relation R < N¥is
defined as follows:

- CS(X].’ ses) Xk) - 1 if <X1, oy Xk> - S

- CS(X].’ ses) Xk) = 0 if <X1, oy Xk> % S

e A relation R is a recursive set iff its characteristic
function c; is a recursive function

e Examples of recursive relations: <, >, £, =
C.(X,¥)=sg(y=x) c.(X,y)=sg(x=Y)
c.(%,) =sg(x=Y)

c_(x,) =8g(x=y)xsg(y = X)

Finding new Recursive
Functions and Relations

* In the next slides, we’ll go over a bunch of
different methods to define new functions
and relations (and sets, but they can be seen
as 1-place relations) from existing ones.

* In each case, we can show that if the existing
functions and relations are recursive, then the
resulting functions and relations will be
recursive as well.

Processes

From functions to functions:

— Composition, Recursion, Minimization (we saw this!)
From functions and relations to functions:

— Definition by Cases

From functions and relations to relations:

— Substitution

From functions to relations:

— Graph

From relations to relations:

— Logical operations

From relations to functions:
— Bounded Minimization and Maximization

Definition by Cases

Suppose f(xy, ..., X)) is defined by:
— f(xy, o X)) = 84(Xq, oy X)) iF Ry(Xy, oy X))
— Xy, ooy X)) = 8 (Xq, oes X)) IR (X, o) X))
Where:

— R; ... R, are mutually exclusive

* i.e.thereisnoxy, ..., X,, i #j: Ri(xy, ..., X;) and Ry(xy, ..., X;)

— R; ... R, are collectively exhaustive

* j.e.forallx,, .., x,thereisai: R(xy, ..., X,)
If:

— g, ... 8, are all recursive functions
— R, ... R, are all recursive relations

Then:
— fis a recursive function

Proof:

— f(xy, s X)) = 81X, vy X)) X CrelXy, v X)) + o + 8, (X,

ceer X)) X Cren(Xq, ooy X))

Example: min and max

* min(x,y) is a recursive function

* Proof: min(x,y) can be defined by cases:
—min(x,y) =xifx<y
—min(x,y) =y if x>y

 max(x,y) is a recursive function as well:
— max(x,y) =xif x>y

—max(x,y)=yifx<y

Substitution

Given:

— Relation R(yy, ..., ¥,,)

— Functions f,(xy, ..., X,), ..., f,(Xg, s X))

We can define relation R’(x,, ..., x,,) as follows:
— R'(Xq, -y X)) iff R(Fi(Xq, o) X1), ooes T(Xq, o) X))

If:

— R(yy, -, Y, is @ recursive relation

— fi(Xy, woor X)), s Fi(Xq, ., X)) @re recursive functions
Then:

— R’ is a recursive relation

Proof:

— CpeXq, ooy X)) = Cr(Fy (X, wey X))y woes T(Xqy s X))

Example

Consider relation R(x,y,z) defined as follows:
— R(x,y,z) iff y x z< x

We see that R is the result of substituting the
recursive function x into recursive relation <

Thus, R is recursive

(Technically, R is the result of substituting the
functions f,(x,y,z) =y x z and f,(x,y,z) = x into g,
and we need to show that f,(x,y,z) =y x z and
f,(x,y,z) = x are recursive ... but that’s trivial using
the identity functions)

Graph

e Remember that any function f:X->Y can be
seen as a relation defined over X x Y

* The Graph operation will obtain a relationship
from a function in exactly this manner.
— Given function f(xy, ..., x,))
— Define Ri(xy, ..., X, ¥) iff f(x, ..., X)) =y

 If fis recursive, then R;is recursive.

* Proof: R;is the result of substituting recursive
function f into recursive relation =

Logical Operations

* Given n-place relations R, R;, and R, we can
define:
— —=R(x4, ..., X)) iff not R(xy, ..., x,)) (i.e. <xg, ..., x,> € R)
— Ry ARy(Xq, «oy X)) ifF Ry(Xq, ..., X)) @nd Ry(X4, ..., X))
— R, V Ry(Xq, .., X)) iff Ry(Xq, ..., X)) OF Ry(Xy, .., X))

* IfR, Ry, and R, are recursive, then —R, R; AR, ,
and R; v R, are recursive:
—Ccr=1-cq
— CrinRr2 = Cr1 X Cry (OF: Cgy g = MiN(Cqy, Cgy))
— Cryvr2 = SB(Cpy + Cry) (OF: Cryy, gy = MaX(Cpy, Cpy))

Bounded Quantification

e Given n+1-place relation R(xy, ..., X,,,), we can define:

e dv<u[R](xy, ..., X,,, u) iff there exists some v < u such that R(x,, ..., X,,, V)
— We’ll simply write this as v < u R(xy, ..., X,,, V)

 Vv<ulR](xy, ..., X, u)iff forall v<u: R(xq, ..., X, V)
— We'll simply write this as Vv < u R(xy, ..., X, V)

e |f Risrecursive, then dv £ u[R] and Vv < u[R] are recursive as
well:

u
Coveatry (Koo X0 U) = GO Cr (X Xy, V)
v=0

u
o N) B [[N C A RY)
v=0

Using Strict Bounds

Caveurr1(Xes-- X, pred(u)) ifO<u
C3v<u[R](X1 ----- Xn,U)I{ HV_U[R](1 P ())

0 if0=u

Coveurr1{X s X ,pred(u)) ifO<u
Coveurr (X1r- -+ xn,u):{vvum(1 pred(u))

1 if0=u

Example: Prime

e Consider the 1-place relation P(x) where P(x)
iff x is prime (alternatively, consider the set P
of all primes)

e P(x) is recursive (P is recursive) since:
— P(x) iff 1<x A =Jy<x dz<xy x z = X

— That is: P(x) can be defined by applying the
processes of logical operators (—, A, and bounded
qguantification), substitution, and composition to
other recursive functions (const, and x) and
recursive relations (< and =).

Bounded Minimization and
Maximization

e Given n+1-place relation
n+1-place functions Min|

— Min[R](x, ..., X, W) = sma

R(Xy, ...y X, ¥) define
R] and Max[R]:

lest y<=w for which

R(x4, ..., X, ¥) if such ay exists

— Min[R](X4, ..., X,, W) =w + 1 if no such y exists

— Max[R](xy, ..., X,,, w) = largest y<=w for which R(x,,

.., X, ¥) if such avy exists

— Max[R](Xy, ..., X, W) = 0 if no such y exists

Proof that Min[R] is Recursive
if R is Recursive

If R is recursive, then Min[R] is recursive as
well:

Min[R](X,,..., X, W) = ch(xl X 1)

where c; is the characteristic function of the
relation S defined as Vt<i[—R](x, ..., X,,, i)

Why This Works

Suppose we want to know Min[R](x,w), where R is defined as below:

w | R(x,w) | =R(x,w) | S(x,w) = c(x,w) i .
(eg) VtSW[—lR](X,W) = i ; CS (X’ I)
Vtsw —R(x,t)

| I WIN|[FKL]|O
—A|m|A]|m|4]|H
o|lo|o|o|r|r
N ININIDNIN|E

1

Verify that this is indeed Min[R](x,w)

Max[R] is Recursive too

e Left as HW question

— Make sure to demonstrate that your function
works by providing a similar table (and note that
for the specific R relation as defined in that table,
the Max column entries should be 0,0,2,2,4,4)

Example: quo and rem are Recursive

 Define quo(tient) and rem(ainder) functions as
follows:
— quo(x,y) = the largest z<x such that z*y < x ify>0
— quo(x,y)=0ify=0
— rem(x,y) = x — y*quo(x,y)

* quo is recursive since it is a definition by cases
where one of the cases uses the bounded

maximization of a recursive relation (and every
other function and relation used is recursive)

° rem is recursive since -, *, and quo are recursive.

Example: The Next Prime

e Let t'(x) =the leasty such thatx<yandyis
prime

e 1U(X) is recursive, since it can be defined as the
bounded minimization of a recursive relation:

— 1(x) = Min[x<y A Prime(y)](x,x!+1)

— Explanation: x!+1 is not divisible by any number <
X, SO either x!+ 1 is prime itself or it has a prime
factor greater than x ... in either case, there exists
a prime number greater than x but smaller or
equal to x!+1

Example: Modified Logarithms

e Consider the following two modified logarithm functions
lo(x,y) and Ig(x,y):
— lo(x,y) = the largest z such that y? divides x if xandy >1
where ‘x divides y’ iff for some z: z * x=vy
— lo(x,y) = 0 otherwise
— lg(x,y) = the largest zsuch that y*<x ifx>1andy>1
— lg(x,y) = 0 otherwise

 |oand lg are recursive, since they can be defined using
bounded maximization (use x as upper bound) and other
‘recursive’ operations over recursive functions and relations
(divides can be defined as bounded existential quantification
(again, use x as bound))

Prime Coding and Decoding Functions

* Asequence X, ..., X, can be encoded using the
following ‘prime coding’: code(x, ..., X,) =
2n*3x1x5x2* mr(n)* where mt(n) is the ‘n-th’ prime
and where 2 is the ‘O-th’ prime.

— 1t(n) is recursive, since (0) = 2 and nt(n+1) = 1’(1t(n))
— code(xy, ..., X,) is therefore recursive as well

 Given some code number s, the sequence can be
decoded using the following (recursive) function:

— ent(s,i) = the i-th entry (the O0-th entry gives the length) =
lo(s, (i)

	Recursive Sets and Relations
	The Plan
	Recursive Sets
	Recursive Relations
	Finding new Recursive �Functions and Relations
	Processes
	Definition by Cases
	Example: min and max
	Substitution
	Example
	Graph
	Logical Operations
	Bounded Quantification
	Using Strict Bounds
	Example: Prime
	Bounded Minimization and Maximization
	Proof that Min[R] is Recursive �if R is Recursive
	Why This Works
	Max[R] is Recursive too
	Example: quo and rem are Recursive
	Example: The Next Prime
	Example: Modified Logarithms
	Prime Coding and Decoding Functions

