Recursive Sets and Relations

Computability and Logic

The Plan

- Eventually, I will show that any Turing-computable^{*} function is a recursive function, thereby closing the 'loop':
 - All Turing-computable^{*} functions are recursive
 - All recursive functions are Abacus-computable^{*} (already shown)
 - All Abacus-computable^{*} are Turing-computable^{*} (already shown)
- Thus, we will have shown that these three sets are exactly the same, providing evidence in favor of the Church-Turing Thesis.
- OK, but to show that any Turing-computable^{*} function is a recursive function, I will need a whole lot more machinery:
 - I need to prove a bunch more functions to be recursive.
 - I will define recursive sets and relations ... which will be a great help in showing certain functions to be recursive ... and vice versa

Recursive Sets

- The characteristic function c_s of a set $S \subseteq N$ is defined as follows:
 - $-c_{S}(x) = 1 \text{ if } x \in S$
 - $-c_{S}(x) = 0$ if $x \notin S$
- A set S is a recursive set iff its characteristic function c_s is a recursive function
- Examples of recursive sets
 - The empty set $(c_s = z)$
 - The set of all natural numbers ($c_s = const_1$)
 - The set of even numbers $(c_s = ?)$

Recursive Relations

 The characteristic function c_R of a relation R ⊆ N^k is defined as follows:

$$- c_{S}(x_{1}, ..., x_{k}) = 1 \text{ if } < x_{1}, ..., x_{k} > \in S$$

$$- c_{S}(x_{1}, ..., x_{k}) = 0 \text{ if } \langle x_{1}, ..., x_{k} \rangle \notin S$$

- A relation R is a recursive set iff its characteristic function c_R is a recursive function
- Examples of recursive relations: <, >, ≤, =

$$c_{<}(x, y) = sg(y - x) \qquad c_{>}(x, y) = sg(x - y)$$
$$c_{\leq}(x, y) = \overline{sg}(x - y)$$
$$c_{=}(x, y) = \overline{sg}(x - y) \times \overline{sg}(y - x)$$

Finding new Recursive Functions and Relations

- In the next slides, we'll go over a bunch of different methods to define new functions and relations (and sets, but they can be seen as 1-place relations) from existing ones.
- In each case, we can show that if the existing functions and relations are recursive, then the resulting functions and relations will be recursive as well.

Processes

- From functions to functions:
 - Composition, Recursion, Minimization (we saw this!)
- From functions and relations to functions:
 - Definition by Cases
- From functions and relations to relations:
 - Substitution
- From functions to relations:
 - Graph
- From relations to relations:
 - Logical operations
- From relations to functions:
 - Bounded Minimization and Maximization

Definition by Cases

- Suppose $f(x_1, ..., x_n)$ is defined by:
 - $f(x_1, ..., x_n) = g_1(x_1, ..., x_n)$ if $R_1(x_1, ..., x_n)$
 - ...
 - $f(x_1, ..., x_n) = g_m(x_1, ..., x_n)$ if $R_m(x_1, ..., x_n)$
- Where:
 - R₁ ... R_m are mutually exclusive
 - i.e. there is no $x_1, ..., x_n, i \neq j$: $R_i(x_1, ..., x_n)$ and $R_j(x_1, ..., x_n)$
 - R₁ ... R_m are collectively exhaustive
 - i.e. for all x₁, ..., x_n there is a i: R_i(x₁, ..., x_n)
- If:
 - g₁ ... g_m are all recursive functions
 - R₁ ... R_m are all recursive relations
- Then:
 - f is a recursive function
- Proof:

 $- f(x_1, ..., x_n) = g_1(x_1, ..., x_n) \times c_{R1}(x_1, ..., x_n) + ... + g_m(x_1, ..., x_n) \times c_{Rm}(x_1, ..., x_n)$

Example: min and max

- min(x,y) is a recursive function
- Proof: min(x,y) can be defined by cases:
 min(x,y) = x if x ≤ y
 - $-\min(x,y) = y \text{ if } x > y$
- max(x,y) is a recursive function as well:

 $-\max(x,y) = y \text{ if } x \leq y$

Substitution

• Given:

- Relation $R(y_1, ..., y_m)$
- Functions $f_1(x_1, ..., x_n)$, ..., $f_m(x_1, ..., x_n)$
- We can define relation R'(x₁, ..., x_n) as follows:
 R'(x₁, ..., x_n) iff R(f₁(x₁, ..., x_n), ..., f_m(x₁, ..., x_n))
- If:
 - $R(y_1, ..., y_m)$ is a recursive relation
 - $f_1(x_1, ..., x_n)$, ..., $f_m(x_1, ..., x_n)$ are recursive functions
- Then:
 - R' is a recursive relation
- Proof:

$$- c_{R'}(x_1, ..., x_n) = c_R(f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$$

Example

- Consider relation R(x,y,z) defined as follows:
 R(x,y,z) iff y × z ≤ x
- We see that R is the result of substituting the recursive function × into recursive relation ≤
- Thus, R is recursive
- (Technically, R is the result of substituting the functions f₁(x,y,z) = y × z and f₂(x,y,z) = x into ≤, and we need to show that f₁(x,y,z) = y × z and f₂(x,y,z) = x are recursive ... but that's trivial using the identity functions)

Graph

- Remember that any function f:X→Y can be seen as a relation defined over X × Y
- The Graph operation will obtain a relationship from a function in exactly this manner.
 - Given function $f(x_1, ..., x_n)$
 - Define $R_f(x_1, ..., x_n, y)$ iff $f(x_1, ..., x_n) = y$
- If f is recursive, then R_f is recursive.
- Proof: R_f is the result of substituting recursive function f into recursive relation =

Logical Operations

- Given n-place relations R, R₁, and R₂ we can define:
 - $$\begin{split} &- \neg \mathsf{R}(x_1, \, ..., \, x_n) \text{ iff not } \mathsf{R}(x_1, \, ..., \, x_n) \text{ (i.e. } <\!\! x_1, \, ..., \, x_n \! > \not \in \mathsf{R}) \\ &- \mathsf{R}_1 \wedge \mathsf{R}_2(x_1, \, ..., \, x_n) \text{ iff } \mathsf{R}_1(x_1, \, ..., \, x_n) \text{ and } \mathsf{R}_1(x_1, \, ..., \, x_n) \\ &- \mathsf{R}_1 \vee \mathsf{R}_2(x_1, \, ..., \, x_n) \text{ iff } \mathsf{R}_1(x_1, \, ..., \, x_n) \text{ or } \mathsf{R}_1(x_1, \, ..., \, x_n) \end{split}$$
- If R, R₁, and R₂ are recursive, then $\neg R$, R₁ \land R₂, and R₁ \lor R₂ are recursive:

$$- c_{-R} = 1 - c_{R}$$

 $- c_{R1 \land R2} = c_{R1} \times c_{R2} \text{ (or: } c_{R1 \land R2} = \min(c_{R1}, c_{R2}) \text{)}$ $- c_{R1 \lor R2} = sg(c_{R1} + c_{R2}) \text{ (or: } c_{R1 \lor R2} = \max(c_{R1}, c_{R2}) \text{)}$

Bounded Quantification

- Given n+1-place relation R(x₁, ..., x_n, y), we can define:
 - ∃v≤u[R](x₁, ..., x_n, u) iff there exists some v ≤ u such that R(x₁, ..., x_n, v)
 We'll simply write this as ∃v ≤ u R(x₁, ..., x_n, v)
 - $\forall v \le u[R](x_1, ..., x_n, u)$ iff for all $v \le u$: $R(x_1, ..., x_n, v)$

− We'll simply write this as $\forall v \le u R(x_1, ..., x_n, v)$

 If R is recursive, then ∃v ≤ u[R] and ∀v ≤ u[R] are recursive as well:

$$c_{\exists v \le u[R]}(x_1, \dots, x_n, u) = sg(\sum_{v=0}^{u} c_R(x_1, \dots, x_n, v))$$
$$c_{\forall v \le u[R]}(x_1, \dots, x_n, u) = \prod_{v=0}^{u} c_R(x_1, \dots, x_n, v)$$

Using Strict Bounds

$$c_{\exists v < u[R]}(x_1, \dots, x_n, u) = \begin{cases} c_{\exists v \le u[R]}(x_1, \dots, x_n, pred(u)) & \text{if } 0 < u \\ 0 & \text{if } 0 = u \end{cases}$$

$$c_{\forall v < u[R]}(x_1, \dots, x_n, u) = \begin{cases} c_{\forall v \le u[R]}(x_1, \dots, x_n, pred(u)) & \text{if } 0 < u \\ 1 & \text{if } 0 = u \end{cases}$$

Example: Prime

- Consider the 1-place relation P(x) where P(x) iff x is prime (alternatively, consider the set P of all primes)
- P(x) is recursive (P is recursive) since:

- P(x) iff $1 < x \land \neg \exists y < x \exists z < x y \times z = x$

- That is: P(x) can be defined by applying the processes of logical operators (\neg , \land , and bounded quantification), substitution, and composition to other recursive functions (const₁ and ×) and recursive relations (< and =).

Bounded Minimization and Maximization

- Given n+1-place relation R(x₁, ..., x_n, y) define n+1-place functions Min[R] and Max[R]:
 - Min[R](x_1 , ..., x_n , w) = smallest y<=w for which R(x_1 , ..., x_n , y) if such a y exists
 - $-Min[R](x_1, ..., x_n, w) = w + 1$ if no such y exists
 - Max[R](x_1 , ..., x_n , w) = largest y<=w for which R(x_1 , ..., x_n , y) if such a y exists
 - $-Max[R](x_1, ..., x_n, w) = 0$ if no such y exists

Proof that Min[R] is Recursive if R is Recursive

If R is recursive, then Min[R] is recursive as well:

$$Min[R](x_1,...,x_n,w) = \sum_{i=0}^{w} c_S(x_1,...,x_n,i)$$

where c_s is the characteristic function of the relation S defined as $\forall t \leq i[\neg R](x_1, ..., x_n, i)$

Why This Works

Suppose we want to know Min[R](x,w), where R is defined as below:

w	R(x,w) (e.g.)	–-R(x,w)	S(x,w) = ∀t≤w[¬R](x,w) = ∀t≤w ¬R(x,t)	c _s (x,w)	$\sum_{i=0}^{w} c_{s}(x,i)$
0	F	Т	Т	1	1
1	F	Т	Т	1	2
2	Т	F	F	0	2
3	F	Т	F	0	2
4	Т	F	F	0	2
5	F	Т	F	0	2
	•	•			^

Verify that this is indeed Min[R](x,w)

Max[R] is Recursive too

• Left as HW question

 Make sure to demonstrate that your function works by providing a similar table (and note that for the specific R relation as defined in that table, the Max column entries should be 0,0,2,2,4,4)

Example: quo and rem are Recursive

- Define quo(tient) and rem(ainder) functions as follows:
 - quo(x,y) = the largest $z \le x$ such that $z^*y \le x$ if y > 0

$$-quo(x,y) = 0$$
 if $y = 0$

 $- \operatorname{rem}(x,y) = x - y^* \operatorname{quo}(x,y)$

- quo is recursive since it is a definition by cases where one of the cases uses the bounded maximization of a recursive relation (and every other function and relation used is recursive)
- rem is recursive since -, *, and quo are recursive.

Example: The Next Prime

- Let π'(x) = the least y such that x < y and y is prime
- π'(x) is recursive, since it can be defined as the bounded minimization of a recursive relation:
 - $-\pi'(x) = Min[x < y \land Prime(y)](x,x!+1)$
 - Explanation: x!+1 is not divisible by any number ≤ x, so either x!+ 1 is prime itself or it has a prime factor greater than x ... in either case, there exists a prime number greater than x but smaller or equal to x!+1

Example: Modified Logarithms

- Consider the following two modified logarithm functions lo(x,y) and lg(x,y):
 - lo(x,y) = the largest z such that y^z divides x if x and y > 1
 where 'x divides y' iff for some z: z * x = y
 - lo(x,y) = 0 otherwise
 - lg(x,y) = the largest z such that $y^z \le x$ if x > 1 and y > 1
 - lg(x,y) = 0 otherwise
- lo and lg are recursive, since they can be defined using bounded maximization (use x as upper bound) and other 'recursive' operations over recursive functions and relations (divides can be defined as bounded existential quantification (again, use x as bound))

Prime Coding and Decoding Functions

A sequence x₁, ..., x_k can be encoded using the following 'prime coding': code(x₁, ..., x_n) = 2ⁿ*3^{x1}*5^{x2}* ... π(n)^{xn} where π(n) is the 'n-th' prime and where 2 is the '0-th' prime.

 $-\pi(n)$ is recursive, since $\pi(0) = 2$ and $\pi(n+1) = \pi'(\pi(n))$

 $- \operatorname{code}(x_1, ..., x_n)$ is therefore recursive as well

- Given some code number s, the sequence can be decoded using the following (recursive) function:
 - ent(s,i) = the i-th entry (the 0-th entry gives the length) = $lo(s, \pi(i))$