Recursive Sets and Relations

Computability and Logic

The Plan

- Eventually, I will show that any Turing-computable* function is a recursive function, thereby closing the 'loop':
- All Turing-computable* functions are recursive
- All recursive functions are Abacus-computable* (already shown)
- All Abacus-computable* are Turing-computable* (already shown)
- Thus, we will have shown that these three sets are exactly the same, providing evidence in favor of the Church-Turing Thesis.
- OK, but to show that any Turing-computable* function is a recursive function, I will need a whole lot more machinery:
- I need to prove a bunch more functions to be recursive.
- I will define recursive sets and relations ... which will be a great help in showing certain functions to be recursive ... and vice versa

Recursive Sets

- The characteristic function c_{S} of a set $\mathrm{S} \subseteq \mathrm{N}$ is defined as follows:

$$
\begin{aligned}
& -c_{s}(x)=1 \text { if } x \in S \\
& -c_{s}(x)=0 \text { if } x \notin S
\end{aligned}
$$

- A set S is a recursive set iff its characteristic function c_{s} is a recursive function
- Examples of recursive sets
- The empty set ($c_{\mathrm{S}}=\mathrm{z}$)
- The set of all natural numbers ($c_{S}=$ const $_{1}$)
- The set of even numbers ($c_{s}=$?)

Recursive Relations

- The characteristic function c_{R} of a relation $R \subseteq N^{k}$ is defined as follows:

$$
\begin{aligned}
& -c_{S}\left(x_{1}, \ldots, x_{k}\right)=1 \text { if }\left\langle x_{1}, \ldots, x_{k}\right\rangle \in S \\
& -c_{S}\left(x_{1}, \ldots, x_{k}\right)=0 \text { if }\left\langle x_{1}, \ldots, x_{k}\right\rangle \notin S
\end{aligned}
$$

- A relation R is a recursive set iff its characteristic function C_{R} is a recursive function
- Examples of recursive relations: $<,>, \leq,=$

$$
\begin{aligned}
& c_{<}(x, y)=\operatorname{sg}\left(y \dot{-x} \quad \quad c_{>}(x, y)=\operatorname{sg}(x \dot{-y)}\right. \\
& c_{\leq}(x, y)=\overline{\operatorname{sg}}(x \dot{-}) \\
& c_{=}(x, y)=\overline{\operatorname{sg}}(x \dot{-y) \times \overline{s g}(y \dot{-x})}
\end{aligned}
$$

Finding new Recursive

Functions and Relations

- In the next slides, we'll go over a bunch of different methods to define new functions and relations (and sets, but they can be seen as 1-place relations) from existing ones.
- In each case, we can show that if the existing functions and relations are recursive, then the resulting functions and relations will be recursive as well.

Processes

- From functions to functions:
- Composition, Recursion, Minimization (we saw this!)
- From functions and relations to functions:
- Definition by Cases
- From functions and relations to relations:
- Substitution
- From functions to relations:
- Graph
- From relations to relations:
- Logical operations
- From relations to functions:
- Bounded Minimization and Maximization

Definition by Cases

- Suppose $f\left(x_{1}, \ldots, x_{n}\right)$ is defined by:
$-f\left(x_{1}, \ldots, x_{n}\right)=g_{1}\left(x_{1}, \ldots, x_{n}\right)$ if $R_{1}\left(x_{1}, \ldots, x_{n}\right)$
- ...
$-f\left(x_{1}, \ldots, x_{n}\right)=g_{m}\left(x_{1}, \ldots, x_{n}\right)$ if $R_{m}\left(x_{1}, \ldots, x_{n}\right)$
- Where:
- $R_{1} \ldots R_{m}$ are mutually exclusive
- i.e. there is no $x_{1}, \ldots, x_{n}, i \neq j: R_{i}\left(x_{1}, \ldots, x_{n}\right)$ and $R_{j}\left(x_{1}, \ldots, x_{n}\right)$
- $R_{1} \ldots R_{m}$ are collectively exhaustive
- i.e. for all x_{1}, \ldots, x_{n} there is a i: $R_{i}\left(x_{1}, \ldots, x_{n}\right)$
- If:
- $g_{1} \ldots g_{m}$ are all recursive functions
$-R_{1} \ldots R_{m}$ are all recursive relations
- Then:
- f is a recursive function
- Proof:
$-f\left(x_{1}, \ldots, x_{n}\right)=g_{1}\left(x_{1}, \ldots, x_{n}\right) \times c_{R 1}\left(x_{1}, \ldots, x_{n}\right)+\ldots+g_{m}\left(x_{1}, \ldots, x_{n}\right) \times c_{R m}\left(x_{1}, \ldots, x_{n}\right)$

Example: min and max

- $\min (x, y)$ is a recursive function
- Proof: $\min (x, y)$ can be defined by cases:
$-\min (x, y)=x$ if $x \leq y$
$-\min (x, y)=y$ if $x>y$
- $\max (x, y)$ is a recursive function as well:
$-\max (x, y)=x$ if $x>y$
$-\max (x, y)=y$ if $x \leq y$

Substitution

- Given:
- Relation $R\left(y_{1}, \ldots, y_{m}\right)$
- Functions $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)$
- We can define relation $\mathrm{R}^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ as follows:
- $R^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ iff $R\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$
- If:
$-R\left(y_{1}, \ldots, y_{m}\right)$ is a recursive relation
$-f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)$ are recursive functions
- Then:
- R^{\prime} is a recursive relation
- Proof:
$-c_{R^{\prime}}\left(x_{1}, \ldots, x_{n}\right)=c_{R}\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$

Example

- Consider relation $R(x, y, z)$ defined as follows:
$-R(x, y, z)$ iff $y \times z \leq x$
- We see that R is the result of substituting the recursive function \times into recursive relation \leq
- Thus, R is recursive
- (Technically, R is the result of substituting the functions $f_{1}(x, y, z)=y \times z$ and $f_{2}(x, y, z)=x$ into \leq, and we need to show that $f_{1}(x, y, z)=y \times z$ and $f_{2}(x, y, z)=x$ are recursive ... but that's trivial using the identity functions)

Graph

- Remember that any function $f: X \rightarrow Y$ can be seen as a relation defined over $X \times Y$
- The Graph operation will obtain a relationship from a function in exactly this manner.
- Given function $f\left(x_{1}, \ldots, x_{n}\right)$
- Define $R_{f}\left(x_{1}, \ldots, x_{n}, y\right)$ iff $f\left(x_{1}, \ldots, x_{n}\right)=y$
- If f is recursive, then R_{f} is recursive.
- Proof: R_{f} is the result of substituting recursive function f into recursive relation $=$

Logical Operations

- Given n -place relations $\mathrm{R}, \mathrm{R}_{1}$, and R_{2} we can define:
$-\neg R\left(x_{1}, \ldots, x_{n}\right)$ iff not $R\left(x_{1}, \ldots, x_{n}\right)$ (i.e. $\left.<x_{1}, \ldots, x_{n}>\notin R\right)$
$-R_{1} \wedge R_{2}\left(x_{1}, \ldots, x_{n}\right)$ iff $R_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $R_{1}\left(x_{1}, \ldots, x_{n}\right)$
$-R_{1} \vee R_{2}\left(x_{1}, \ldots, x_{n}\right)$ iff $R_{1}\left(x_{1}, \ldots, x_{n}\right)$ or $R_{1}\left(x_{1}, \ldots, x_{n}\right)$
- If R, R_{1}, and R_{2} are recursive, then $\neg R, R_{1} \wedge R_{2}$, and $R_{1} \vee R_{2}$ are recursive:
$-c_{\neg R}=1-c_{R}$
$-c_{R 1 \wedge R 2}=c_{R 1} \times c_{R 2}\left(\right.$ or: $\left.c_{R 1 \wedge R 2}=\min \left(c_{R 1}, c_{R 2}\right)\right)$
$-c_{R 1 \vee R 2}=s g\left(c_{R 1}+c_{R 2}\right)\left(o r: c_{R 1 \vee R 2}=\max \left(c_{R 1}, c_{R 2}\right)\right)$

Bounded Quantification

- Given $n+1$-place relation $R\left(x_{1}, \ldots, x_{n}, y\right)$, we can define:
- $\exists v \leq u[R]\left(x_{1}, \ldots, x_{n}, u\right)$ iff there exists some $v \leq u$ such that $R\left(x_{1}, \ldots, x_{n}, v\right)$
- We'll simply write this as $\exists v \leq u R\left(x_{1}, \ldots, x_{n}, v\right)$
- $\forall v \leq u[R]\left(x_{1}, \ldots, x_{n}, u\right)$ iff for all $v \leq u: R\left(x_{1}, \ldots, x_{n}, v\right)$
- We'll simply write this as $\forall v \leq u R\left(x_{1}, \ldots, x_{n}, v\right)$
- If R is recursive, then $\exists v \leq u[R]$ and $\forall v \leq u[R]$ are recursive as well:

$$
\begin{aligned}
& c_{\exists v \leq u[R]}\left(x_{1}, \ldots, x_{n}, u\right)=\operatorname{sg}\left(\sum_{v=0}^{u} c_{R}\left(x_{1}, \ldots, x_{n}, v\right)\right) \\
& c_{\forall v \leq u[R]}\left(x_{1}, \ldots, x_{n}, u\right)=\prod_{v=0}^{u} c_{R}\left(x_{1}, \ldots, x_{n}, v\right)
\end{aligned}
$$

Using Strict Bounds

$c_{\exists v<u[R]}\left(x_{1}, \ldots, x_{n}, u\right)=\left\{\begin{array}{cc}c_{\exists v \leq L[R]}\left(x_{1}, \ldots, x_{n}, \operatorname{pred}(u)\right) & \text { if } 0<u \\ 0 & \text { if } 0=u\end{array}\right.$

$$
c_{\forall v<u[R]}\left(x_{1}, \ldots, x_{n}, u\right)=\left\{\begin{array}{cc}
c_{\forall v \leq u[R]}\left(x_{1}, \ldots, x_{n}, \operatorname{pred}(u)\right) & \text { if } 0<u \\
1 & \text { if } 0=u
\end{array}\right.
$$

Example: Prime

- Consider the 1-place relation $P(x)$ where $P(x)$ iff x is prime (alternatively, consider the set P of all primes)
- $P(x)$ is recursive (P is recursive) since:
$-P(x)$ iff $1<x \wedge \neg \exists y<x \exists z<x y \times z=x$
- That is: $\mathrm{P}(\mathrm{x})$ can be defined by applying the processes of logical operators (\neg, \wedge, and bounded quantification), substitution, and composition to other recursive functions (const ${ }_{1}$ and \times) and recursive relations (< and =).

Bounded Minimization and Maximization

- Given $n+1$-place relation $R\left(x_{1}, \ldots, x_{n}, y\right)$ define $\mathrm{n}+1$-place functions $\operatorname{Min}[\mathrm{R}]$ and $\operatorname{Max}[R]$:
$-\operatorname{Min}[R]\left(x_{1}, \ldots, x_{n}, w\right)=$ smallest $y<=w$ for which $R\left(x_{1}, \ldots, x_{n}, y\right)$ if such a y exists
$-\operatorname{Min}[R]\left(x_{1}, \ldots, x_{n}, w\right)=w+1$ if no such y exists
$-\operatorname{Max}[R]\left(x_{1}, \ldots, x_{n}, w\right)=$ largest $y<=w$ for which $R\left(x_{1}\right.$,
$\left.\ldots, x_{n}, y\right)$ if such a y exists
$-\operatorname{Max}[R]\left(x_{1}, \ldots, x_{n}, w\right)=0$ if no such y exists

Proof that Min[R] is Recursive if R is Recursive

If R is recursive, then $\operatorname{Min}[R]$ is recursive as well:

$$
\operatorname{Min}[R]\left(x_{1}, \ldots, x_{n}, w\right)=\sum_{i=0}^{w} c_{S}\left(x_{1}, \ldots, x_{n}, i\right)
$$

where c_{S} is the characteristic function of the relation S defined as $\forall t \leq i[\neg R]\left(x_{1}, \ldots, x_{n}, i\right)$

Why This Works

Suppose we want to know $\operatorname{Min}[R](x, w)$, where R is defined as below:

w	$\mathrm{R}(\mathrm{x}, \mathrm{w})$ (e.g.)	$\neg \mathrm{R}(\mathrm{x}, \mathrm{w})$	$\mathrm{S}(\mathrm{x}, \mathrm{w})=$ $\forall \mathrm{t} \leq \mathrm{w}[\neg \mathrm{R}](\mathrm{x}, \mathrm{w})=$ $\forall \mathrm{t} \leq \mathrm{w} \neg \mathrm{R}(\mathrm{x}, \mathrm{t})$	$\mathrm{c}_{\mathrm{s}}(\mathrm{x}, \mathrm{w})$	$\sum_{i=0}^{\mathrm{w}} c_{S}(x, i)$
0	F	T	T	1	1
1	F	T	T	1	2
2	T	F	F	0	2
3	F	T	F	0	2
4	T	F	F	0	2
5	F	T	F	0	2

Verify that this is indeed $\operatorname{Min}[R](x, w)$

Max[R] is Recursive too

- Left as HW question
- Make sure to demonstrate that your function works by providing a similar table (and note that for the specific R relation as defined in that table, the Max column entries should be $0,0,2,2,4,4$)

Example: quo and rem are Recursive

- Define quo(tient) and rem(ainder) functions as follows:
- quo $(x, y)=$ the largest $z \leq x$ such that $z^{*} y \leq x$ if $y>0$
- quo(x, y) $=0$ if $y=0$
$-\operatorname{rem}(x, y)=x-y^{*} q u o(x, y)$
- quo is recursive since it is a definition by cases where one of the cases uses the bounded maximization of a recursive relation (and every other function and relation used is recursive)
- rem is recursive since -, *, and quo are recursive.

Example: The Next Prime

- Let $\pi^{\prime}(x)=$ the least y such that $x<y$ and y is prime
- $\pi^{\prime}(x)$ is recursive, since it can be defined as the bounded minimization of a recursive relation:
$-\pi^{\prime}(x)=\operatorname{Min}[x<y \wedge \operatorname{Prime}(y)](x, x!+1)$
- Explanation: $x!+1$ is not divisible by any number \leq x, so either $x!+1$ is prime itself or it has a prime factor greater than x... in either case, there exists a prime number greater than x but smaller or equal to $x!+1$

Example: Modified Logarithms

- Consider the following two modified logarithm functions $\mathrm{lo}(\mathrm{x}, \mathrm{y})$ and $\lg (\mathrm{x}, \mathrm{y})$:
- $\mathrm{lo}(\mathrm{x}, \mathrm{y})=$ the largest z such that y^{z} divides x if x and $\mathrm{y}>1$ where ' x divides y ' iff for some $z: ~ z * x=y$
$-\mathrm{lo}(\mathrm{x}, \mathrm{y})=0$ otherwise
$-\lg (x, y)=$ the largest z such that $y^{2} \leq x$ if $x>1$ and $y>1$
$-\lg (x, y)=0$ otherwise
- lo and \lg are recursive, since they can be defined using bounded maximization (use x as upper bound) and other 'recursive' operations over recursive functions and relations (divides can be defined as bounded existential quantification (again, use x as bound))

Prime Coding and Decoding Functions

- A sequence x_{1}, \ldots, x_{k} can be encoded using the following 'prime coding': $\operatorname{code}\left(x_{1}, \ldots, x_{n}\right)=$ $2^{n *} 3^{\times 1 *} 5^{\times 2 *} \ldots \pi(n)^{\times n}$ where $\pi(n)$ is the ' n-th' prime and where 2 is the ' 0 -th' prime.
$-\pi(n)$ is recursive, since $\pi(0)=2$ and $\pi(n+1)=\pi^{\prime}(\pi(n))$
- code $\left(x_{1}, \ldots, x_{n}\right)$ is therefore recursive as well
- Given some code number s, the sequence can be decoded using the following (recursive) function:
$-\operatorname{ent}(\mathrm{s}, \mathrm{i})=$ the i -th entry (the 0-th entry gives the length) $=$ lo(s, $\pi(i))$

